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TECHNICAL REPORT R-103

THEORETICAL ELASTIC STRESS DISTRIBUTIONS ARISING FROM DISCON-
TINUITIES AND EDGE LOADS IN SEVERAL SHELL-TYPE STRUCTURES

By ROBERT H. JOHNS and THO_/AS W. ORANGE

SUMMARY

The deformation and complete stress distribution

are determined for each o.[ the following edge-loaded

thin ._hells of revolution: (I) a right circular c!,lin-

der, (2) a frustum of a right circular cone, and

(3) a portion of a sphere. The locations of the

maximum circumferential and meridional stresses
on both the inner and outer surfaces are also found.

The basic equations for the above were selected from

the published literature on the subject and expanded

to produce resultant-stress equations in closed form

where practicable to do so. Equations are also devel-

oped for the discontinuity shear force and bending

moment at each of the following junctions: (1) axial

change of thickness in a circular cylinder, (2) axial

change of thickness in a cone, (3) change of thickness

in a portion of a sphere, (4) a cylinder and a cone,

(5) a cylinder and a portion of a sphere, (6) a
oj!inder and a fiat head, and (7) a cone and a

portion of a .sphere.

INTRODUCTION

Weight considerations in space-flight structures

require loading or stressing of tim structures very

nearly to their maximum capabilities. It is
therefore important that the operating stresses be

known witll Ii high de_ee of accuracy. With

this knowledge it is possible to obtain the best

ratio of structural weight to _oss weight and to
ensure the structural integrity of the vehicle.

Shell structures offer excellent weight, and h_l)ri-

cadon characteristics for use in missile and space

structures. It is the purpose of this report to

present methods of analysis for several problems

encountered in this type of structure. The mem-

brane stresses produced by the pressurization of

such shells are usually easily computed. How-

ever, the forces and stresses involved in the dis-

continuity regions are not so readily determined,

and the published techniques of sohttion are in

many eases of such a nature as to preclude theh'

use by the design engineer. There are four basic
difficulties involved. First., for some problems no

solution exists in the published literature. See-

end, many of the published solutions involve
mathematical complexities beyond the background

of the average designer. Third, a large propor-

tion of the solutions, as presented, are not carried

to the point where they can be used directly for

determining stress distributions. Fourth, many

of the solutions, depending on the assumptions

involved, require eMeulations of an extensive and
tedious nature.

In general, the more rigorous solutions are based
on few assumptions and lead to difficult analyses

which are of no practical use to the designer. It

is necessary to sacrifice some degree of accuracy to
obtain _ solution in a reasonably direct mathe-

matical manner. The degree of accuracy that is

required and the degree of complexity that is con-
sidered acceptable are factors which nmst be

weighed in selecting a method of analysis for any

shell problem.
An attempt was therefore made in the prepara-

tion of this paper to survey the literature to sort

out the more practical _ypes of solutions. [t was

necessary to expand some of the solutions exten-

sively to obt_dn expresssions for all the internal
forces. From these, complete stress distributions
:rod tim max-imum stresses and their loeat, ions

were determined. The selected sohitions, as

modified and extended, are compiled in this report
in a form which can be readily used by the average

1
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engineer. These solutions include treatment of

the following problems:

(A) Deflection, rotation, and internal stresses

in the following edge-loaded shells of
revolution :

(1) Right circular cylinder

(2) Frustum of a right circular cone

(3) Porlion of a sphere

(B) Discontinuity shear :rod moment at the
following shell junctions"

(1) Axial change or thickness in a circular

cylinder

(2) Axial change of thickness in a cone

(3) Change of thickness in a sphere

(4) Junction of a cylinder and a cone

(5) Junction of a cylinder and a portion of a

sphere

(6) Junction of a cylinder and a flat. head
(7) Junction of a cone and a portion of a sphere

Tile analyses for the changes in thickness are

intended as an investigation of the edge effect, of

chemically milled or machined surfaces where an

abrupt change of thickness s):nmetrical about the

middle surface occurs. Several special cases can

be deduced from those just. given. The equations
for the edge-loaded portion of a sphere can be

specialized to give the case of an edge-loaded

hemisphere. The solution for the junction of a

cylinder and a portion of a sphere will yield the

special case of a cylinder with a hemispherical

dome. The solution of a cylinder with fixed ends

can be obtained from the case of the cylinder with
a flat head. The solution of a junction of a cone

and a portion of a sphere has the special case in

which the cone and spherical shell have a common

t.angent tO _eir meridians at; the _unct_on: This

solution combined with the solution for a cylinder

with a hemispherical dome will yield the solution

of a toriconical head in which the torus is a portion

of a sphere.
Only the final equations and parameters neces-

sary for the solution of any of the cases are given

in the body of the report. The derivations, to-

get.her with intermediate equations and some dis-

cussion, are presented as appendixes A to L.

SYMBOLS

a radius of cylinder, in.
c thickness ratio

D Eh3/12(1--_2), lb-in.

E modulus of elasticity, psi

H radial shear force in wall of shell acting on a

plane perpendicular to axis of revolution,
lb/in.

h thickness of shell wall, in.

M bending moment in wall of shell, in.-lb/in.

m _/12(I v _)
N uniform normal force in wall or shell, lb/in.

p internal pressure, lb/sq in.
Q shear force perpendicular to wall of shell,

]b/in.

R radius of spherical shell, in.

r radius of parallel circle, in.

V angle of rotation of a tangent to a meridian,
radians

deflection perpendicular to axis of revolu-

tion, in.

x distance along meridian from edge of cylin-
der, in.

y distance along meridian from apex of cone,
in.

a half-angle of cone or portion of sphere,
radians

f_ "¢/3(1--v2)/a2h _, in.-'

edge-deflection influence coefficient

0() e-c cos()
X 4/3 (1 -- v2)R2/h _

_/12(1--v_)/h 2 tan2a, in. -1/2

v Poisson's ratio

a normal stress, psi

r shear stress, psi

( ) e-_)[cos( )+sin ( )]

,p angular measure in plane containing merid-
ian and axis of revolution, radians

_' ( ) e-C) [cos( )--sin ( )]

fi ( ) e-() sin( )

edge-rotation influence coefficient

Subscripts:

c cylinder

f flat head

i, j dummy indices
k cone

m meridional

s spherical shell

x meridional direction on cylinder
y meridional direction on cone
0 circumferential

r shear

meridional direction on spherical shell

0 junction

1,2 different thicknesses at change of thickness

C-" _;._q-'t_Y .- ;Z.'>
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' ::_::f_j_:if;!::::_;_i Because some subscripts are used only once or of deflection and rotation at the discontinuity.

<-}=-_:_:_.i!i_:!_:_ twice they are, for purposes of brevity, defined These two equations can be solved for the un-

:+. _c,_.:!,_ where they occur and not listed here. This is known discontinuity shear and moment. Once

particularly true for many parameters appearing these have been determined, it. is possible to

in the cone amdyses. ._so, the usage of a number find the rotation, deflection, and internal forces
k:<{::_" of subscripts is considered self-evident, and no for any element of the shell.

amplification of their meaning is given. The edge-loaded shells and the regions of the

shell on either side of the discontinuity are as-
METHOD OF ANALYSIS sumed to have constant thicknesses. The sur-

In the design of pressure vessels, certain regions face described by the revolution of a meridian

frequently exist where continuity of the structure midway through the thickness is called the middle

cannot be satisfied by membrane forces alone, surface. The middle surface of the shell is as-

Such regions are known as "discontinuity" areas, sumed to be continuous from one region to another

The discontinuity forces which are induced to across the discontinuity. Hence, no additional

make the rotations and deflections of the walls moments are induced by mismatching of the
continuous are usually of a local nature, but they effective lines of action of the meridlonal forces in

may considerably alter the stress distributions in the two regions. A discussion and analysis for
the regions where they occur. It is assumed in including the effect of nonconcurrence of the

this report that, where more than one discontinuity middle surfaces at the junction is presented in

is present, the distance between them is sufficient appendix L, but it is not used in the body of the

"that each does not noticeably affect the discon- report. The shear forces acting on sections made

tinuity shear and moment of the other, by planes containing the axis of revolution and

:>,".:Tg __ .MI shells are rotationally symmetric and loaded intersecting the shell are zero because of axial

::..>;_:_ _._!._ by internal pressure. The stresses due to the symmet_ T. Thus the circumferential or hoop

<<::" ::-:_*: weight, of the structure are not considered. These stresses acting on these meridional planes (planes

,,_::::. _,:_:>, are usually much smaller than those due to inter- containing the a.'ds of revolution and a meridian)

;.'-<:_= :.<i<:_ hal pressure and may frequently be neglected are principal stresses.
::_::-_:< :_::::-,".::i without introducing noticeable error. The The normal stresses perpendicular to the middle

.....-..., ..,_,_ stresses due to dead weight, supports, concen- surface of the shell are neglected, since they are

_ ......:: ;:'_-__. trated loads, or other such conditions can be usually much smaller than those in the circumfer-

-,:_-:< :,'_v._ superimposed upon those presented here when such ential and meridional directions. These radial
.?:._:: _!_:.._ conditions exis_ and are significant, stresses which are neglected vary in magnitude
: ..... ;=::,_r- The usual method of determining the discon- from the value of the pressure on the inside

':<:_ ;<_<.:_!_ tinuity forces is to imagine the shell to be physi- surface of the shell to zero on the'outside. Con-
._.'_:-_.. 5fi7[.;_

.....-:: .,._:-_ rally separated at the discontinuity. The edges sequently, since the radial stress is neglected,
" --',_ ... 1< ,.< % ,x

' :_:: _:_:!_'_: of the two components will, in general, rotate and a biaxiai stress state is assumed. The direct

• :!-::.':::_;7,:<,-_, deflect different amounts if the membrane stresses stresses are assumed uniform throughout the

alone are considered. Deflections and rotations of thickness. The bending stresses are assumed to
-_.. ......... .-,_ the edges of the components can be found from vary linearly through the thickness from zero at

':::::"_::: conventional membrane analyses. To preserve the middle surface to maximum values at the

:.-<::i ;:i'::<:I continuity of r0t_iti0n and deflection in the ]i(itual inner and outer surfaces.
.... .-'.:::...... structure, :_ discontinuity shear aml moment must The shearing stress varies pavaboli('allv through

" .>7: (" *'

:: ...... " be present, on the edge of each component. Equi- dm thi(,kness with the mardmi_m Occurring at the

. .:..... <-.:: Iibrium of forces at the cross section requires that middle surfaue and (h,,,re_tses to zero at the inner
..... _:"::." the shear and moment on the edge of one tempo- an([ outer surfaces. As mentioned before, no

;:/i-!_ :i!;::i nent be equal and opp-sit,, to those on the mating shear stt',,sses act on meridion'd phmes. The
edge of the other component. Htrvingexpressions meridional stresses, that is, stresses acting on

-:::..:=_- ..........-:_ for the edge rotation and deflection of earl| planes normal to the meridian, are very nearly

_!_ component due to edge shear and moment, as equal to principal stresses. This is because the7 well as to internal pressure, it is possible to shear stresses are usually much smaller than the

:,'.-'-;,c::::_.;:;.:?.::,:, write two equations expressing the equality normal stresses. In fact, the meridional stresses

- 2.," .g; _]__.. _',i'g2"T_'_T.: "" :.'_:-,'va'_'2_ -_'" .':_" 7 :a: ";'-a''. "7'?r';. _ea_.. "r'>:['." "'7 ::*\:Tv'_i--', " "_5>:?''_a-'_:C¢_g-'-757_ ..... -_.-_* 7 _- - ,. ......... . .# -_ - . ...... _.- -

.... ..,:ab'_,.':',_":./.'.._ .: _ =" ,',:_.":".: 5_._.','" _" "<k '2:!'- J.i'_I,_"'9 ": .g*"-'4":-'.? " . ?:,."::-:7 :.'.Q"{ '_.,,.:g":_.. _._ 2_: .{:'k_ "r :.. ÷,:" ",.":'Q":: "! 7: ':-: "'. :' " Y-. " '- ::._" .*" "7'
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on the imwr and outer surfaces are principal
stresses because the shear stresses are zero at, these
surfaces.

Because of the nature of tlw bending stresses,
the maxinmm and minimum stresses will be fmmd

on the inner and outer surfaces. "_qwn solving
for the lee.aliens of the maximum stresses, imd

from these the stresses themselves, the usual

tlmoLT of niaximums and minimums is employed.

Since the equations for stress are exponentially

decaying sine functions, more than one solution

will be found for the possible location. However,

only the smallest positive value of the independent

variable so obtained is significant.
The maximum stress sometimes occurs at the

loaded edge of the shell when the slope of the com-
bined stress curve has a nonzero value. There-

fore, when solving for maximum stresses, it is

ahvays necessary to check the loaded edge of the
shell in addition to the location of zero slope

nearest to the loaded edge. Because of the bend-

ing stresses, both the inner and outer surfaces must

be checked for the maximum stress. By checldng
both surfaces, both the maximum and minimum
stresses will be obtained.

The material is assumed to be homogeneous

and isotropic and to obey Hooke's law. The
results are applicable only to stresses within the

elastic region for thin-walled pressure vessels.

Also, small deflections are assumed throughout
the report in the derivation of the basic equations.

SUMMARY OF SOLUTIONS

The summaries are arranged here in the order

"hi which they would ordinarily be used. First,

the discontinuity shear and moment are deter-

mined for the particular shell junction being con-

sidered. Having determined these, it is only
necessa.ry to substitute them into the corre-

sponding edge-loaded shell equations to deter-

mine the stress distributions. The arrangement.
of the summaries is not the same as the order in

which they are derived in the appendixes. This

== : ,,
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is because some of the equations derived for the

edge-loaded shdls were necessary for the sg!u-
tion of the juncthm problems. Consequently,

the edge-loaded shell solutions appear first inthe
appendixes.

DETERMINATION OF DISCONTINUITY SHEAR

FORCES AND BENDING MOMENTS

Shear and moment at an axial change of thick-

ness in a circular cylinder.--Referring to figure 1

for sign convention, the discontinuity shear and
moment for this case are

2--v r" (c_ 1) (c5/2.+_1)
(1)

and

where

, _o- 4a--TL(c' +_ 2_7_(c+ 1)'] p (2)

h_
C=_ (3)

and the subscript 1 refers to the cylinder with

thickness h_. Because of the sign convention

chosen in figure 1, the sign for Q0 must be changed

when solving for the stresses in the cylinder of
thickness h:.

,,Tr-,,rrr,,7-r _p _ VY7ZT/TT/YT"/YZ'_-A surfaceI t {

. _.. Axis of
] | re,,o_ution

FIGURE 1,--Change of thickness in cylinder.

Shear and moment at an axial change of thick-

ness in a cone.--With the sign convention as

shown in figure 2, the discontinuity shear and
moment for this case are

and

He= (_,._,o-_,..,,o)(,o,.,,-o,_.,,)-(a,.,-a_.,,)(,,,,..,,o-,,,:..,,o)
(_,,.o -_=,.o) (',,_, o-'_.M_) - (_,.,_ -_,_.o) (0o,.,,o..,_,.o) p

-]-/0-- (_I.Ho__{_2.HO)(601.3,0___2.M0)_ (_I,3/O__{_2.Mo) ((_I.H0__C02,HO) p

(4)

(5)
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The subscripts 1 and 2 refer to the regions of

thicknesses hi and ha, respectively. The expres-

sions for the edge influence coefficients are ob-

tained from their more general counterparts pre-
sented in the section "Frustum of a cone loaded

by edge shear and moment and internal pressure."

For the problem being considered here, y_=yo_=yo

and rl=ra=ro, but X and $ are not the same for

the two edges at the junction, because hi does not.

equal ha. Therefore,

5

I--

_t =2/2t_'Yo

_a=2_2_yo m}#1
---(h7 tan a

m
132_--- , =

_h_. tan

(6)

The parameters )_1, _l, 0_1, and _t are associated
with the region of thickness hi; likewise, X.,. _a,

oaa, and _a are associated with ha.
The expressions for the edge influence coeffi-

cient are

m a /-- 2r0

m_r_tanaR . 3(l+v) tan=a ro
oat._= 2Eh_ _+ mE 2hi cos a

3ro tall

_ 2Eh_ cosa

mr, /27or0cos a

( _-_ ro_
mrg sin a / ro m'ro t.an' a \ 2/

31._---- E-_ ¥_7 cos a _a _-----_-E5 _2+Ehl cos a

_2.,%= ha cos----_

maro

° 3(1+_) tan:a /- ro n 3ro tan a
m r5 tan a _ _ _,_

o_._= 2Eh'_ "_ -mE "_/.h_ cos a 2Eh,acosa

/Ttr./_ro cos
_',.n,, _, _] h2 Q_

mr_sin a f r,, _s
a"_ Eh: X/2_ cos--------_

, .)rn_ro tans o_ _1--:_ r_

S(1--v)E _+EhT., _ 7_

(r)

596835 G1- 2
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h \
_o

FIGURE 2.--Change of thickness in cone•

where

(s)

and

(0)

Figure 3, taken from reference 1, can also be used

to determine graphically the 12 functions for cer-

tain ranges of _. If the analytical expressions are

a,_ ] i i

.98,0/ 26 3o

F_v_ 3.--Functions used in analysis of conical shells

(based on v=0.3).

used, reference 2 can be used to find values for the

Bessel-Kelvin functions and their derivatives up

to arguments of 107.5. For large arguments, the

following asymptotic ex_pressions may be used:

(10)
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The desired discontinuity shear and moment are

now found by use of equations (4) and (5), respec-

tively. Essentially all of the preceding analysis
is taken directly from reference 1. The nomen-

clature is essentially the same as in reference 1

except for some differences due to changes in sign
convention.

Shear and moment at a change of thickness in

a portion of a sphero.--The discontinuity shear
and moment for this case are

Ho__(1--_)R V (1--c)(l_c _/') "]p1. _ _ (11)
--2-_ "_n a L(lq-_q-c)_l

and

.vl0__(1--_)R2 [- (1--c)(1--c _) -]4x,, p (12)
where

h_ (13)
c----_

and the sign convention is as shown in figure 4.

The subscript 1 refers to the portion of the sphere

with thickness h_. Because of the sign convention

used in figure 4, the sign for Tie must be changed

when solving for the stresses in the region of thick-

ness h:. Also, the angle (r--a) must be substi-

tuted for a in the stress equations for thickness h,..

!/" 'g°9
g,

FIGURE 4.--Change of thickness in sphere.

Shear and moment at the junction of a cylinder
and a cone.--In this case the discontinuity shear

and moment are

and

M°=@*.,,o-- _.,_0)(_*._,o--_,._o)- @*.-0--_._,0)(_*.-0--_."0) p

(14)

(15)

_o

p--_.

FIGURE 5.--Junction of cone and cylinder.

where the subscripts c and k refer to the cylinder

and cone, respectively. Most of the edge in-

fluence coefficients appearing in the preceding

equations are evaluated from the e.xpressions

found in the summaries for the edge-loaded

cylinder and edge-loaded cone (eqs. (30) and

(38)). In addition, from membrane theory

and

0_¢' P:0 ' )t
a2 (

(16)

The sign convention for [to and .1/0 is given in

figure 5.
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(o)

(b) (c) (d)

(a) Geometry and sign convention.

(b) =_90%

(c) ==90 °.
(d) a:>90 °.

F_(;_-RE 6.--Junction of cylinder and portion of sphere•
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Shear and moment at the junction of a cylinder 6(a) for the sign convention, the discontinuity

and a portion of a sphere.--Referring to figure shear and moment for this shell junction are

and

f[1--;, _xt

H0= si-_-na--(2--v)c][l+c2_] _--[l+c*+2c2_'csina] c°s

(l+c")"-_ 2c" (l+c sina)
_C s--_no_

+' }
cos o_ R

(l+c*)_& , 2c." (l+csin a)
_v'dsin

(17)

(is)

where the subscript c refers to the cylinder and

s to the portion of a sphere and

h. (19)
ho

Equations 07) and 08) are true whether a is
greater than or less than 90 ° (see fig. 6). For

the particular case a=90 °, or R=a, the solution
is obtained for a cylinder with a hemispherical

dome. Note that, when solving for the stresses and

displacements in the spherical portion of the shell,

Ho+_- cos a is substituted for H0 in equations

(42) to (52) (see fig. 6(a)) for this case.
Shear and moment at the junction of a cylinder

and a flat head.--The discontinuity shear and
moment for this case are

Ho=--{ cZX_+2(2--v)caX*+2(2--v)(l +v) } 4 p2cZX,2+[(1-- v)#+ (1 + v)]X, + (1--,,_)c

(20)
a.,l(l

Mo={ 2c_X_+(1--_)c_X_+2(2--v)(l+_) "] a_

(21)

where

c= h2 (22)
h_

and the subscripts c and 9/refer to the cylinder
and flat head, respectively. The sign convention

is given m figure 7. If the thickness of the
flat plate is very large in comparison with the
thickness of the cylinder (h_ >> h_), c approaches
zero and the solution for a cylinder with fixed

ends free to expand axially is obtained.

%
41lllllllll//lllll

MO0_ Y P

_P

¢ =o.,,

_Z--_ Mo+-_ _

-- a ...--------_

FtGt:;RE 7.--Junction of cylinder and flat head.
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pR

HO

(a)

k =k

(b) (c) (d)

(e) (f)

(_) Geometry and sign convention,

T

(d) a,<_--ak.

(e) a.>2_-a_. (f) a.-----;+"_. (g) a,<_"ka,.

FI6Cl_E 8.--Junction of cone and portion of sphere.

7::: '" :'- " "

-: ; .

............................... _'-1 :! 1'
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Shear and moment at the junction of a cone vention shown in figure 8, the discontinuity

and a portion of a sphere.--Using the sign con- shear and moment for this case are

RH0= [_,,.,,0(_..,,0--_,..,,0)--_..,,0(_,,.,,,0--_,..,,0)1 _ cos _,

(23)

and

(24)

where the subscripts k and s refer to the cone and

the portion of a sphere, respectively. From
membrane theory

and . 1--_, R._ . (" (25)

0,. ,=-5- _-; sm _, j

The remaining edge influence coefficients are ob-

tained from the summaries for the edge-loaded

cone and portion of a sphere (eqs. (38) and (50))

with changes in the signs for _,._, and _,.._q due to
the change in sign convention for V. Also the
signs for _._0 and _._0 must be changed because

of the change in sign convention from//1 to He.
Because of the sign convention chosen in figure 8,

the sign for H_ must also be changed when it is

substituted for/-/I in the equations for the edge-
loaded cone to find the stresses (see also fig. 11).

Note that Ho+-_ cos a, is substituted for He in

equations (42) to (52) when solving for the stresses

and displacements (see fig. 6(a)). The cone and

portion of a sphere need not have a common

tangent to their meridians at the junction. For

the special case where the cone and spherical shell

are tangent and the spherical shell is tangent to _
cylinder of the same radius, the solution is obtained
for a toriconical head that has a torus which is a

section of _ sphere. The various possible sym-

metrical junctions of conical frustums and

spherical shells are shown in figures 8(b) to (g).

DETERMINATION Or STRESSES AND DEFOaMATIONS IN

EDGE-LOADED SHELLS

Right circular cylinder loaded by edge shear and

moment,--The following equations are applicable

at any distance x from the loaded edge of the
cylinder. The type and location of stress, as well
as the rotation and deflection, are given by equa-
tions (26) to (29). Where + or :F signs occur, the

upper sign refers to the stresses on the inner
surface and the lower sign to the stresses on the
outer surface. See figure 9 for the sign convention
and figure 10 for curves of the functions 0, _, ,I,,
and _. Values of these functions are also tabulated
in references 3 and 4.
Meridional stress:

_r_=d: _[.llo_(l_x)+_Qol_(l_x)] (26)

Circumferential stress:

a 6_

Rotation of meridian :

V=2--_D[2_.!loO(_3x)+Qocb(_3x)] (2S)

Outward displacement:

_ i
w=2_Ef_x[o'_(_x) +QoO(_x) ] (29)
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/

%
(a)

At the loaded edge, these equations reduce to

. 6._/o
•.).=0----+

(ffi)ZlO=( 2ff2 h 6v\-1 2 ao+ Qo

V0----2-_D (2_ Mo + Qo) - ,,,uoMo +_oqoQo

where

(26a)

(27a)

(28a)

(29a)

(3O)

The locations or the peak stresses are given by

the following equations:
Meridional s_ress:

(3_)

Circumferential stress:

Frustum of a cone loaded by edge shear and

moment and internal pressure.--The following

equations are applicable at any distance y from

the apex of the conical frustum where y_>_y>y2

(see fig. 11). The type and location of stress, as

I 2 3 4 5 6 7

BX, or x_

_IGURE 10.--Functions used in analysis of cylindrical

and spherical shells.
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Hj

pr_
_- (a)

13

/

/

,( /" pr H
/ \ M..-'---/ "--U ._

/ "'I :/' / t //_-..--

o, a,, /%._ -/ /_ / _ I
// _.'_, -..J

I M_ + _ dy _ - .......

\ \ \ _" _'"- N. 4-_

---_ _+ 7_"d_." pj .
----_ _] T(r+dr}

(b)

(a) Geometry and lo.tding. (b) Tnterna[ forces _tud molnen_s.

FIGURE l |. -Frustum _ff cone.

well as the rotation and defh'('tion, are given by

equations (33) to (36). Where :t: or T signs

oecur, the upper _md lower signs refer to the

stresses iteting on the inner _md outer surf_wes, re-

spectively. See figure 11 for the sign convention

and loading. The solutions are given in terms
_ge,sa_-- Ol _a

.... t

dy

l

of dm Bessel-Kelvin hm(.tions _ts ttthulated in

reference 2. The primes denote differentiation

with respect 1o _. Soh, tions for the eonst,_mts of

integr,_tiou ('_ C,, (a, and (_, . ' _, _s well as other

p_mtTneters _tppmtring in the following equations,

are _ven at the end of this summary.

..: "'.7"':,-%'_',:..::'.,",'::(:::';.,'F_', .':' :_:: ."_2_. ":/:'_,'__'_:',; _',."!",--.,._5--.._ _'_:.'-5.-.. '.-".". : ':.:_"';-.'"-'_'::W:-. ,' ""'" ". _:: :-'_':'." .-- -.'_.'!-:':':",':.':
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X h,ridiona] st ress :

1 [ber.,_ _:3 2vbc;,_)]"=Yo.l( C_ . m= (_beV=,_÷ _

+(,Ebci,&4 :_ , , ]. m2 (_ber2_±2vber._)

m2 (_kri_+2vke L,_)

+(' [k,_L.,t.:t: :_' (fikrr.',ii+2vker.,ti,])_, m_ - .

lan a/y , 3 l an a'_

Circumferential stress:

3 v_ber_)_

+Ca E_ ker'_ :g 3 (2kei"_+v$kei'_) _rn'

3 (2lcer.,._-kvJce4_)])

y 3 tan a'_+tan a _4-_ -i_7_v. ] p (34)

Rotation of meridian:

m _
I"=_-_ (C_ bei_--C_ bero__+C_kei_

_C_ker_)_3py tan _a (35)Eh

Oulward displaeemen! :

- sin o_F(,

+(_ 2 be;,'_i vbei_li --FCa kcr'2_--vker..,_

., )'] ',/'si,,_( _,"

(36)

These equations reduce (o lhe following equa-

lions al the loaded edges, where the subscripts l

and 2 refer to the edges y, and y_, respectively•

y_ sin a cos a sin a -- 6
_',---- 21, P-T H, +_ M, (33a)

yzsin a cos a sin a -- 6M_
a_ 2h P--T lt"4---h V (33b)

a°_--4 1--v C+2vG 4-1 p

sin_ m_ A-- B v(
__ ?I_ tan _ 1-4 p

h 2 C÷2vG

+sina/±6_A--_ B vC)

A__(--lm'A.±_'C±ZG_
C-+ 2_G- / M_ (34a)

3 tan_ a (1 m'ArzFv("_zF2G_,.\CK+2vG_: /

_+y_tana 1-_ ph 2

+-T- \ / /M,

'_1 = al. M 1_'_:/1 "_ al.//1H1 + {_1. ,,p

(34b)

(35a)

(35b)

(36a)

(36b)

•., :_- "..-.: -:.'. ,, -

r-....,.:._ 7 ,::,:", ":

:r."+ =:.::':_.,.\

, 7 -/. / .

:,) '5.- '- -

,_:. ]

, .. . . -= . .

• • . . . .

L)•.-... .

::!4 •':,;i) :
<2_: :;.- .

:',: ..; Q. ::..'..

//:::%
".::. :2 ." Q",.

k•::%-',. :;_ _,:' _I4

•: :_j_.:i- .

L-iL ........

_,: --:. ,.-;. " . g.. .

"'7".'," "%'* -

_:11]
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( 1 ) [-,H_y,h sin aq-_ phy_ sin2a tan a (_, ber'2$_+2v ber2$,)+2m2y, bei2_ I, Ph_ tan2a-]
G= • s(1-.) J (a7a)

h(C+2_a)

( 1"2"2 ) [H,y,h sin a+_phy, sm a tan a (5 bei'.,_+2v beio6)--2m2y, bet.,5 .1I_ pM" tan%-]

G= h(C+2_a) " - s(1-.) I (arb)

1 .,., a)(_2ke:$2+2vker.,_a)+2m'y21cei,_a[.'vI,-Ph2 tan2a-]H:y..,h sin aJ-_ phyl sm a tan r'
Ca= . " " 8(I--_) _] (37e)

h(C,_+2_O.,)

1 - , 2 a) (_'2 kei'_2+2_ kei2_.a)--2m2y.2 ker.,$._[.ll.2, ph2(',= (H.y,h sin a+_phya sin ,x tan _I---L-_-"J ¢ara)

and

"7..; :._ <:'=_.4

e "L "-- :,.:.:-.e

2!

2:i 7i41!!

' -:...... <7:1L.><_"

....... :.: _y. = g

D'_,3 _ "

D']'2 Y' o

(.a)i, ill _ "_'_ - ,i_, 2

m_r_ tan a 3(l+v) tan 2a/ r_ 3rt tan ,_
a_,._= 2Eh2 _a+ mE "_/ 2h cos_ _2, 2Eh cos a

(_ m2Yi

"<=--kg¥ h

.
_, _= mr_ sin a r,

• Eh 2h cos ot
m=rt tan _a_a¢ --9_ r_

9a S-(T---Ty-E- Eh cos a

m3 /---_

.m =r.,

:Ira tall _m2r_ tan a 2(l+v) tan 2 a r.a fl_ 2IChoa,,.,_-- 2Kh" fl_ mE 2hcosa . ('oso_

D'_21%

tara /'2r,, Cos c_ Q_,

a.. =_,._i. %/ .,
"' E_¥2h cos a _s--

1 _') "ra2r2 tan 2 a
S(1--v)E _-] Eh cos a

(38)
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The remaining parameters necessary for the solu-

tion of the cone are given ill equations (8) and (9).

Equation (10) can also be used where appropriate.

As previously mentioned, the cone analysis was
t_aken directly from reference 1.

When Ill, .11_, ]'I2, and _ are sel equal to zero, it
will be seen that the resuhing equations for stress
are not the membrane stresscs. This is true

because the edge support is not the same as that

necessary for the membrane condition when there

are no edge shears or moments. This must be

borne in mind if one wishes to separate the

bending stresses from the total stresses at any
given point.

The locations of the stress peaks were not

det ermined for this case because of the complicated

nature of the stress equations.

Portion of a sphere loaded by edge shear and

moment,--The following equations are applicable
at any angle _ from the loaded edge of the spherical

shell. The type and location of stress, as well as

the rotation and deflection, are given by equations

(42) to (45). Where + or :F signs occur, the
upper sign refers to the stresses on the inner

surface and the lower sign to the stresses on the

outer surface. See figure 12 for the sign conven-

tion and figure 10 for curves of the functions O, ¢,,
'P, and _. Values of these functions are also
tabulated in references 3 and 4.

Meridional stress:

cr,=--E_h cot (a--_)9(X_) :V_ _(X_)].'lo

6R fl(Xso)_ H0 sin--E h e°t (°t-s°)'I,(x_) ± _ J

(42)

Circumferential stress:

2X _ 6v

L2)_ . 6vR-- _ O(X_)-4- X-_-_= fi(X¢) II,, sin a (43)

Rotation of meridian:

[= ]V--_ ---_ O(Xe)Mo÷q,(X_)[L, sin a (44)

Out ward displacement:

2X
@--_--_ sm (a _)[X_I'(Xe)Mo RO(X_)II. sin a]

(45)

At the loaded edge, the previous equations
reduce to

6/1¢ro He cos a (46)(_,)+-0-- ± h= h

2X_

_-i-]-al0 _-H0 sin et (47)

(48)
2X .

w--o--_--_sm a (XMo RHosin a) --_MoMo-_$HoHo

(4)
where

4Xs 2},_ sin a -I
OOMo= R Eh _°= Eh

(50)
2X_ sin a 2XR sin _ a

_M°= Eh _++o= Eh

The locations of the peak stresses are given by
the following equations:
Meridional stress:

R 2 "_
f [csc (a--_=)--2keot (a--_m)±6_RHosina_-2X cot(a--so,,)Mo

1 tan . R ) (5])

Circumferential stress:

1 (3v R :FX _) RHosin a± 2X3:1fo

'&=x arc tan (:_vR + X,)Rlaro sin Ro,--6_x-£Mo

(52)

It is apparent that equation (51) is transcendental

and must be solved by an iterative procedure.

Because of this fact, and the length of the equation,

it might be more advantageous to plot the merid-

tonal stress distribution for a short distance using

}': :a:: !.' 2 :..: .'./,Y ":
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{2/

• . .r. ": .L:

.- - ,, .

• .. • _.

:::' ' .... 7,,i

(a)

/

//i /

//

/,f- d/14_ / I

/
i I=+O=+.,

(b) _ "

\\\

(cl (d)

(a) Geometry and loading.
(b) Internal forces and llionu,nl._.
(c) a<90 °.

I (d) a--90%
(e) ,_>90°.

FIGURE 12. Portion of sphl,r_,.

/
P

(e)
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equation (42). Then the location of the maximum

stress, as well as its magnitude and the stress
distribution curve, is obtained.

The _lution for the edge-loaded hemisphere

can be obtained by simply substituting a=*r/2 in

the previous equations.
A discussion of edge influence coefficients for

thin spherical shells is presented in reference 5.

Three different approximate solutions, including

the Geckeh,r approximation used in this section,
arc obtroined for the differential equation of the

thin spherical shell. The accuracy of these solu-
tions and recommendations for their use are dis-

cussed.

Simply supported circular fiat plate with uni-

form load, edge moment, and edge normal load.-
Refer to figure 7 for the geometry, loading, and

sign convention for this case• The maximum and
minimum stresses are found on the inner and outer

surfaces at the center of the plate and are given by

, , , Ho_6M._3(3+_,)a _
a,),.o= (%),.0=---_-±-'_-_ _ p (53)

where the upper and lower signs refer to the
stresses acting on the inner and outer surfaces,

respectively. The rotation of the edge of the

plate is given by

a aS

V=- (lq_-)---DM,+s(I+_,)Dp--,_MoM0+_p (54)

The radial deflection of the edge of the plate is

_----- (l_hh)aHo=-$_,.Ho (55)

Given or implied in equations (54) and (55) (see

appendix D) is

a

wM. (1 +v)D a_r.= 0

aa

_=8(1-t-_)D _=0

(1--_)a ] (56)

Eh

DISCUSSION

In all shell junctions analyzed in this report,

the shell is assumed t.o be long enough that one

edge or junction can be analyzed independently

of any other. In general, it is not necessary to

make this assumption in order I,o solve for the

induced forces at the junctions or for the slrcsses

within a given shell. If the theory is arc.liable or

can t)e derived for a given shell, it is only necessary
to add two additional simultaneous equations for

each junction to account for the close proximity of

one junction to another. Then all equations for

the junctions that are near each other are solved

simultaneously. However, for most shells gen-

erally used in engineering practice, the junctions

are usually far enough apart to consider each one

individually. Titus no serious limitation is in-

curred by considering each junction separately as
is done in this report. The work is considerably

simplified because the mathematical difficulty in-

creases very rapidly with the number of simultane-

ous equations.
The solution for the right circular cylinder is

based on theory given in reference 3, as is that for

the portion of a sphere. The analysis of the por-

tion of a sphere is not valid in the region of the

poles. For edge-loaded spherical segments with
small included angles, shallow-shell theory such
as in references 5 and 6 should be used.

The analysis chosen for the cone (ref. 1) is

essentially an "exact" analysis for relatively long

cones, that is, those in which the edge effects do

not. overlap each other. In reference 7, by use of

essentially the same basic differential equations,
a solution is obtained for the short conical frustum

with edge loads. The equations for both solutions
are in terms of Bessel-Kelvin functions. Although

it is not possible to present the results for the cone
in as concise a form as some of the other shell

solutions, most of the work has already been per-

formed in putting them into their present form.

LEWIS RESEARCH CENTER

_'ATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CLEVELA.'_V, 0HIO, January 5, 1961 2
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APPENDIX A

.... RIGHT CIRCULAR CYLINDER LOADED BY EDGE SHEAR AND MOMENT

Consider a thin right circular cylindrical shell,
subjected to axially symmetric shear forces and
bending moments uniformly distributed along one
edge, as in figure 9(a). Because of this loading,
the internal forces and moments shown in figure
9(b) arise. According to reference 3 (pp. 466 to
471), the internal forces and moments are given by

N,----0

N, = 2aB[/_,_10'I'(/_x) + QoO(f_x)]

M,=Mo¢(Bx) +_ Qo_ (/_x)

V

M,- _M,-- _Mo¢(_x) + _ Qo_ (_z)

Q,= 2t_M0_(t_x) +Qo,I,(Bx)

The equations for the rotation Vand the deflection

are given as equations (28) and (29) in the text.

The functions O, q,, ,I,, and _ are shown graphically

in figure 1O. They are also tabulated in references

3 and 4. The largest stresses at a given section

corresponding to these forces and moments are

6M, 6 [j/o,C(/_x) + 1 QoB(,Sx)]

6v 'b 1
.,,,,=va,,=-_[Mo (Bx) +_ Qo_(B_')"]

3Q, _h[Q0,i,(Oz)2BNl,,i2(3x)]r'_2 h

(A1)

The combined stresses in the axial and circumfer-

ential directions are

o'_= 4- o".% (A2)

and

_r,= a.v,+ aM, (A3)

respectively, and, with proper substitution, can be

written as equations (26) and (27) in the text.
In all instances where + or :F signs occur, the

upper sign refers to the inner surface and the lower

sign to the outer surface.

Equations (26), (27), and (A1) give the stress

distribution throughout the cylinder. In addition
to the stress distribution, the locations and magni-

tudes of the various maximum stresses arc usually

of considerable interest to the designer. The lo-
cations where the various combined stresses are a

maxamum (except the possibility at the loaded

edge) may be obtained by the usual theory of
maximums and nfinimums (see the section

METHOD OF ANALYSIS). Equating the de-

riw_tive of r, with respect to x to zero gives

, ( 0o)x,-_ at,' tan l+_iLf;

where x. is the distance from the loaded end of the

cylinder to the location of the shear-stress peak.

Similarly. the locations or the meridional am{ cir-

cumferential stress peaks are obtained and given

as equations (3l) and (32) in the text.

[9

:'. ,.... "' " ..":... :':":-'.:,i._:."::,..'/_'-7_'.,,,,:_'.d._._'-",'.::,_".,?.'-_-.,":::,_.;:.;-[_":2",,":f,'::-:,,:-(:.."/72-,,"[".:,:':..'.:,'::..-'. 7. ',. _:: ".-,:','<:;::" '," .". "':" ,( :1,.:'._-".".--7-:.':':?.'._"." ...','.'._::-':,
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APPENDIX B

FRUSTUM OF A CONE LOADED BY EDGE SHEAR AND MOMENT AND INTERNAL PRESSURE

The equalions for the internal forces in a conical

frl.lStuln subjected Io edge shears and ,noments

and inlerna] pressure as shown in figure 11 (.a) can

be obtained from references 1 and 8. These are

given in terms of the Besse]-Kelvin functions as

tabulated in reference 2. With the sign conven-

tion as strewn in figure ll<b), they are

Q cot ot

_=_.1 (C, ber_ _+C..,bei.,_
+Ca ]cer.2_-+-C+lcei.:_) (Bla)

H CSC

-+-C_kei_)wPY_ sin_-a (Blb)
COS O_

1

_\'_=_ ( C_ ber:_-+-Cz bei_-4-Ca ker_

+ C_kei_ _)+ 7nJ tan a
2

(B 1c)

Y,=_ ' b" '
" 2y (C_ ber_-+-C_ e_:_d-Caker_

-}-C_kei'_)+py tana (Bld)

h
3/_=--_ [C_(_ bei'_+ 2_ bei.__)

--C+(_ ker_-+-2_ ker2_)]-C ph_ ta_f a (Bh')
s(_-_)

3I,=--_ [(7_(2 bei_4-v_ bei'_)

-- C._(2 ber.__+ v_ ber_ _) -+-G (2 lcei_ _-4-_ kei_ _)

. , -- ph _tan _a

where

20

=2u@ }

rn_= t2(1--v _)

u_----'h tan

(B2)

and the primes denote differentiation with respecl
to (. The equations for the rotation _" and the

deflection w are given as equations (35) and (36)

in the text,. The expressions for-lhe-constants

of integration ('1, ('_, c_, and C_ are presented in

[he text as equations (37) for the loading condition

sho,aaa in figure 11 (a).

The four constants of integration are deter-

mined from the following boundary conditions:

at, _--_,-- 2_/y_ }

H_= --H_ M_-- 3I_

at _-- _2-_2v_ry; (B3)

H_= --H_ M_---M_

As discussed in reference 3 (p. 563), the loads
applied at one edge do not appreciably affeet the
stresses and deformations at the other edge if the
cone is sufficiently long. It will be assumed that
the thin shells considered here are long enough to
conform to the above assumption. This is almost
universally true for the conical frustums used in
missile and spacecraft applications.

The bet and bet functions and their derivatives

increase rapidly in an oscillatory manner as the
distance y increases. Conversely, the ker and
kei functions and their derivatives which also have

an oscillatory character decrease rapidly as the

distance y increases. Hence, the terms involving

ker and kei and their derivatives are neglected

when working near the large end of a conical

frustum (or with a complete cone). The con-
stants C_ and C: (which are associated with the

ber and bet functions and their derivatives) are

then determined from the boundary conditions

at the edge y--y_. Only when working with a
frustum of a conical shell are all four constants

of integration necessary. The constants Ca and
C_ (associated with the ker and lrei functions and

their derivatives) are determined from the bound-

ary conditions imposed upon the small opening of
the truncated cone.

For a long thin-walled conical shell whose half=
angle a is not close to _r/2, the calculations can

'. • :.'.<: a " .! ;" _" ":. :;, - - :-", _-?:.',-':-7 _; /:: • 2" -:_.'.: .;r :..';-_V;f':, ,_1:_.)+-,=:_-,_: : '3_.5,, '--(=, .=_: .e;:;r::: 2=,5 :._4 ;._ .:';Y'.:, :;;...:,;._ 7..,:;, .:.y ;.. : i-: ;:._,+a:,-..:a: .,:_, ,.7 :,.; _._-:gqc•: ,+,'C:;,_.'+; : -_,: .';.. :-

:'.: "7'= '-'7-"' ":: .': "_:_"5:2:"','_'_;_'@::;:'"?::"'::"" :,=;'" .<*%?_D2.:::2.%:.:,.?_:" ,_-:, 2:r-::5,: < ,.'=- ',"-._1,;_ _4'-,}.>!._:-_;/:' _' ",.-';1 ;-% :ii ._;" ";•._-:..._2.);:.: :,_=_-.::<:'r,_:'-?:';_ , ./ ":<., .;.:.:_',,.5 -,.
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be simplified by solving two sets of two simulta-

neous equations instead of one set of four equa-

tions. Ca and C, are neglected when evaluating
C_ and C2 from the conditions at the large end

of the frustum, and C'.t and C: are neglected when

evaluating Ca and C_ from tile conditions at the
small end.

Substituting the boundary conditions at y----y_

into equations (Blb) and (Ble) and neglecting the

terms containing Ca and 6'4, the following equa-
tions are obtained:

cs- a ._ ber2_t + C_ bei.a_l) Jr Py_ sin_ a

.1I_= h

q-2r ber_) ]-_ ph_ tan_ a
8(1-_)

C, and ('_ are obtained from these equations and

given as equations (37a) and (37b) in the text.

Substituting the boundary conditions at y-=y,
into equations (Blb) and (Ble) and neglecting the

terms containing G and (2, yield the following two

equations:

--H esc.______a(Ca ker2_2-_-C_ b,,; _ __PY_ sin%

M,=_ [Ca(_z kei'z_+2_ kei._)--C,(_z ker':_
.m y_

+2_ kero_o) ]-+ ph_ tan_ a
"- s(t-_)

From these equations, Ca and ('4 are found and

presented as equations (37c) and (37d) in the text.
The closed-form solutions for the four constants

of integration can now be substituted into equa-
tions (B1) to determine the complete distribution
of interred forces. As was true in the derivation

of the constants, the terms containing ('a and C_

can be neglected when working near the large

end of a long frustum (or on a complete cone),

and the terms containing G and C_ can be neg-

lected when working near the small end of a

frustum of a long thin-walled conical shell.
The influence coefficients for the edge rotation

and deflection of a truncated cone can now be

found. Substitute the expressions for the con-

stants of integration (eqs. (37)) into equations

(35) and (36) and solve for the edge rotations and

deflections. The coefficients of the applied loads

will be the desired edge influence coefficients, as

shown symbolically in equations (35a), (35b),

(36a), and (36b).

The relations between edge loading and edge
rotation and deflection can be e,xpressed in terms

of the edge coefficients as equations (35a), (35b),

(36a), and (36b) in the text, where the subscript 1

refers to the edge of the large end (y=y_) and the

subscript 2 to the edge of the small end (y=y_).

Using the loading condition shown in figure 11(a)

and the sign convention of figure 11 (b), the e:vpres-

sions are obtained for the edge influence coeffi-

cients and given as equations (38) in the text.
The meridional stresses and the circumferential

stresses are given by

N_ 6M_
a_=--ff q- _-i (B4)

and

Ns 6,1f _
o-,=----if-i- -h-i (BS)

respectively. With the proper substitutions, these

equations become equations (33) and (34) in the

text. In all instances where .-4-or _= signs occur,

the upper sign refers to the inner surface and the

lower sign to the outer surface. At any given
section the maximum shear stress acting on a

middle surface is given by

3 G 3 cot a
r=_--_=_ (C_ ber.,_4-C, bef:_

q-C_ ker.,._4-C_ ke'l,._) (B6)

Equations (33), (34), and (B6) give the complete

stress (listribution throughout the conical h',stum.



PORTION OF A SPHERE LOADED BY EDGE SHEAR AND MOMENT

A portion of a sphere subjected to rotationally

symmetric uniformly distributed edge loading, as

in figure 12(a), will have present, internal forces

and moments shown in figure 12(b). According

to reference 3 (pp. 549 to 551), the internal forces

and moments are given by the following (with a

change in notation for _,) :

N_=--ER MO_(X_,)+Ho (sin a) "i'(X_)]cot (_x--_o)

. 2V
._o=--ff Mo_(X,)--2XHo (sin a)O(X,)

M,=Mo¢(X,)--_ Ho (sin a) n(X¢)

M_- vM, = vMoO(X,)--v_Rx Ho (sin a) _ (X,)

Q¢=R Mort(X,) +Ho (sin a),I,(X_,)

The equations for the rotation V and the deflection

w are given as equations (44) and (45) in the text.

The functions O, q,, _,, and f_ may be obtained

from figure 10 or the tables in references 3 and 4.

In this analysis, circumferential stresses (sub-

script 0) refer to the stresses normal to the cross

section obtained by cutting the spherical segment

with a plane containing the axis of revolution.

Meridional stresses (subscript. ,_) are those acting

on the cross section cut by a cone whose apex is at

the center of the sphere and whose axis coincides

with the axis of revolution of the spherical seg-

ment.

The largest stresses at a given section corre-

sponding to the various internal forces and mo-
ments are

¢%-=-_= c°t (_--*') [2-_ Mo_(X_) + Ho (sin a)_(X_,)']

,V_ 2X _ - . . 2X-
trN,=--_--=_-_MoXI_()k_o ) --_- H 0 (sin a) 0(X_)

631, 6 V .... R _(X,,)]

6M, 6v[_,/0_I,(X_)RH0(sin a)n(X_)_

3Q, 3X 3 .
r,=-_-=_Mofl(X_,) +_-_Ho(sm a) _I,(X,)

(C1)

• _. • .

The combined stresses in the meridional and

circumferential directions are

and

text. _Arhere 4- or • signs occur, the upper sign

refers to the inner surface and the lower sign to _-<-.:.:..-_=2S:::!_@:_the outer surface, i_:i

Equations (42), (43), and (C1) present t_ com-
plete picture of the stress distribution throughout ::::":-<:'-::-!;,i_i}:!::'_f:.':i::

the spherical segment. From these equations, ?:.:::::;': :(:.
the locations and magnitudes of the various ii:_:'i:_J:_')'ii_i_::i;:

respectively, and can be written (with proper maximum stresses can be obtained as a further _'.:4!:i!¢!_,i_:_}'::i;!i_2.

substitution) as equations (42) and (43) in the aid to the designer. The points where the corn- ii_)i:,i}_-;__(::_!_}_2:'
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':.">: :,::::/:':i;_::_:,:. bined stresses are a maximum (except for the plane) at, the location of the shear-stress peak.

:,::.;/.:i:-:::: .i possibility at the loaded edge) may be found by The locations of the meridional and circumfer-
": : :_:'_::: :::_ the usual theory of maximums and minimums ential stress peaks, given as equations (51) and

-: :-:,i-:.,:.:_.,,::_ (see the section NYETHOD OF ANALYSIS). (52) in the text, are obtained in a similar manner.

: _:':'_'":':" Setting the derivative of r_ with respect to _ The equations presented in this appendix apply
}::"'ii::::;?if:!"ii:ii equal to zero and solving for _ _ve to a portion of a spherical shell whose half-angle
: .;-.-. ,.:, ._ a may be less than or greater than _r/2 but does

( ) not approach 0 or _" (fig. 12). The reason fori _:).;_::,_-!:i:_::._.::i 1 R H0 sin a (C4)
,-,..;::-_:::.:::i!)_i_:_::,.:'_:._,. :.-=: e,=_arc tan 1 X _i0 this is that shallow-shell theory (refs. 5 and 6)
....:::=c-.:.:,_. must be used near the poles. The special case of
"":":'_: _'-::_" where _, is the angle between a radius at the the edge-loaded hemisphere may be obtained by

, _::..... ::.._,,::, loaded edge and a radius (in the same meridional substituting a=_/2.

::

:::iiii?!:i:;ii::

H '":. "' - t

";'.:.: ":: )!

' _f ",'k ] . "l ,_ ]i_'" i



APPENDIX D

SIMPLY SUPPORTED CIRCULAR FLAT PLATE WITH UNIFORM LOAD, EDGE MOMENT, AND EDGE
NORMAL LOAD

Consider lhe case of a simply supported circular

flal plate under the action of a uniformly distrib-

reed normal load p and with a radially ssqnmetrie

edge normal load H0 and an edge moment M0 as

shown in figure 7. The plate can most readily be

anMyzed as three separate problems and then, by

superposition, the final results can be obtained.
Consider first the action of H0 on the plate.

This is a case of hydrostatic plane stress:

The radial deflection at the edge is

_ (1--v)a Ho__HoHow= Eh

The surface of the plate remains flat, and therefore

COSo----0

Next analyze the plate under the influence of

3Io. The moment at any point in the plate is M'o.

Therefore, the stresses at the inner and outer sur-
faces are

, 6Mo

For small deflections normal to the plate, the radial
deflection is zero and

SM0=0

24

From reference 3 (p. 43) it can be shown that the

rotation of the edge of the plate duc to 2_10 is

aMo
l .... (l_t_v)D-Oe_oMo

Now consider the simply supported plate acted

upon by the uniformly distributed load p. From

reference 3 (p. 57) the max-imunl stresses occur at
the center of the plate and are shown to be

3(3-Fv)a'
(_,),_- (,_,),_= _: Sh_ P

For small deflections normal to the plate, the

radial deflection can once again be assumed zero.
Th ere fore,

_=-0

The angle of rotation of the edge can be shown
to be

aa
V=8(1 +_)D p---%p

By adding the effects of the cm)ditions described

previously, the following results are obtained. The
maximum and minimum stresses are found on the

inner and outer surfaces at the center of the plate

and are given by equation (53) in the text. The

edge rotation and deflection are given by equa-
tions (54) and (55) in the text, respectively.



_':_' APPENDIX E

SHEAR AND MOMENT AT AN AXIAL CHANGE OF THICKNESS IN A CIRCULAR CYLINDER

In this appendix and in the following appendixes

the discontinuity shear force and bending moment

are determined for several specific shell junctions.
Because the derivations for the shear force and

bending moment at the various junctions are very

similar, they are given here in a general way.

These equations are then used with the proper

subscripts for the shear and moment in most of

the following junction problems.

The general equations for the so-called edge

rotations and deflections of two shells, i and j, at

their junction can be written in terms of internal

pressure, discontinuity shear force and moment,

and edge influence coefficients as

_o. _----_.aoHo + _.MoMo + _. _P

Vo. ,=o_,..oHo +_,.MoMo +,,,,, , p
(E_)

_0._ = _.uoHo+ $_.MoMo + _,. ,P

Vo. _= _.,_oHo +o,,..,_oMo + o_,.,p

The equationg for continuity of rotation and de-

flection at the junction are

Vo._= Vo._ _ (E2)

We.,= _o,_ J

By substituting equations (El) into equations

(E2), the unknown discontinuity shear force and
moment are found to be

(E3)

(E4)

These equations can now be used with the proper

subscripts and edge coefficients to determine the

discontinuity forces at most of the junctions
considered in this report..

The case considered in this appendix is that of

a radially symmetric longitudinal change in the

wall thickness of a thin-walled circular cylindrical

pressure vessel. The radial expansion of a pres-

surized cylinder with closed ends due to the mem-
brane stresses is

- ( .).°-w,= 1-5 _---*"P (Es)

This equation applies only at a distance from the
closed orals where the effects of the closures are

negligible. The metal)rant stresses cause no re-

ration of the meridians of a cylinder, and therefore

w_=0 (E6)

The free radial expansion of a cylinder due to inter-

nal pressure is inversely proportional to the wall

thickness. Consequently, discontinuity forces

and moments must be present which will make the

displacements and rotations of two adjacent re-
gions of different, wall thicknesses identical at

their junction.

Assume the discontinuity forces to he directed

as shown in figure l(a). Refer to equations (E3)

and (E4); for this case, [to =-- Qo. Letting sub-

script.s i and 2 refer to the regions of thicknesses

ht _nd h_., respectively, the expressions for the un-

known (tiscontinuity shear and IIlonlellt, are (with
_%=0)

- (_,-_.,) (,o, .,,o- _o.,.,,o)
(2,=(_,.,_o_,_.Qo)(0',..,,o-'o,.-,o)- (_'.-"o--_.'o)(_°'.Qo--'°'.'_o) p

(6_.Qo--(S_,'_O)('.-_o-- _"'0)-- (&,'_'o--(k",Uo)(_',oo- _",Oo)p

(E7)

(Es)

25
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It' tile discontinuity shear and moment are di- tim influence coefficients obtained from equations
retted as shown and the pressure is internal, then (E5), (E6), and (30) are as follows:

(E9)

a' ,__(1_ v_'t a=_"'=(1--_) Rg,,, _"' 2/Eh,_

1 ]

($1"Qo'--25_D, g)2'Oo= 213_Da

1 1
_.M,,=2B_ D , 62,Mo_2B_Da

oat,_---O _o2, p_O

I 1

1 1

chosen in figure 1(a), the sign for Q0 must be
changed when sol%ng for the stresses in the cyl-
inder of thickness h_.

Substituting the edge influence coefficients as
given in equations (E9) into equations (E7) and
(ES) results in equations (1) and (2) in the text for
Qo and -lf0. Because of the sign convention



The radial expansion of a conical shell due to

internal pressure is a function of the thickness;

therefore, if the thickness varies along a meridian,

discontinuity forces are induced to make the slopes

and deflections continuous along the meridian.

The discontinuity shear and moment are deter-

mined here in terms of the edge influence coeffi-
cients and internal pressure for a truncated

conical shell with a radially symmetric sudden

change of thickness at a distance Yo from the apex.

Positive shear and moment are as shown in figure
2.

Letting tlle subscripts I and 2 refer to the regions

of thicknesses h_ and h2, respectively, the expres-

sions for the discontinuity shear and moment can

be written as equations (4) and (5) in the text by

referring to equations (E3) and (E4).
The expressions for the edge influence coeffi-

cients for the cone are given in the section "Frus-

tum of a cone loaded by edge shear and moment

and internal pressure." For the problem being

considered here, Y_=Y_Yo and r_=r2----ro, but k

and _ are not the same for the two edges at the

junction because h_ does not equal h_. The

parameters ),_, $_, _, and _ are associated w_th the

region of thickness h_; likewise, ),:, _, _, and _

are associated with h2. The expressions for the

edge influence coefficients necessary for the solu-

tion of Ho and M_0 are given explicitly as equations

(7) in the text.

The desired discontinuity shear and moment

are found by use of equations (4) and (5), respec-

tively. The deflection, rotation, and internal

stresses at any point in the cone can now be de-

termined by use of the equations in the section

"Frustum of a cone loaded by edge shear and

moment and internal pressure."
27
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' APPENDIX G ":_:-".:;_

-gff_AR AND MOMENT AT A CHANGE OF THiC, KNESS_IN • PORTION: ()1 _ A-SP_E t_ri2/. - i::,A,

Consider the case where a change of thickness coincide at their junction are determined in the

lakes place in a thin-walled spherical shell, svin- following paragraphs. _ ::':-_:: :
"' k, ,7 d-_{: . : -::_

metrical about an axis as shown in figure 4. The Let the subscripts 1 and 2 refer to the regions :.::-::!:.:_:.,%/;:.
radial expansion due to the membrane stresses of thicknesses h_ and h_, respectively. Then the ::_=":;_':'::"_>;'::=:':
only is different m the regions of (l_fferent. thick- expressions for the discontinuity shear and moment _:i@}i:}'::i"ii::_:i;'i!;

nesses. The shear and moment required to make can be written in the following manner by referring _."-..:': :"_::' _:=
the slopes and deflections of the two regions to equations (E3)and (E4): ;}i:'."i:_:::::{:_:_':

Ho=(_.,o__._.,,o)(,_.Uo__,_.Mo)- (_.,o__.Mo)(,,,,.,,o__,_.,,o)p (G1) _::::_::-;:::-:

(151. p--152, p) (WI,H0--f"02, H 0) : :'::;?"::W " :_ f:.:::/'

2"_E0='({_I /./0__$ 2 HO)(I.OI,Mo___O2,.14.0)__(_I,Mo___2.Mo)(£OI,IIO__f.O2,HO ) p (G2) ::-:_:,-:,"::.,:.,._.

where _0_,_=,0_,p===0. It is known from con- _ _(l'v)R 2 (1--_)R _ " _":"_;:'':::
ventional membrane theory that the displace- o_,_-- _ sin a _'_ 2E/_ sin a

r.:('_._.,._ .: :-: .,.,.._-

ment perpendicular t.o the axis of symmetry of a 2X_R sin _a 2X_R sin _a _:.,,':_;c_.:..,:, :-

point on the shell due to membrane forces only is _._o= Eh_ $_'_o-_ EI_ _ .,.:,::,._,:,....

(___) _h _ :.i::;,:,:_'::'._o._-N_= sin a--8_p (G3a) tSt M0=2X_ sin a _ 2X_ sin ot
• Eh_ _'_r°-_ -Eh_ (G4) ,::>:, :::.i_.::. .......

Since the membrane forces cause no rotation o_._=0 o_,_=--0 _,:_,..::;::.5_,::-:

of the meridians, 2X_ sin a 2X_ sin a ":,.:.,"_-:'_:...........

_=0 (G3b) _o_,no= Eh_ °_2"H°=- Eh2 i_):!_iii::_:-:::{!_:)::!,

The other necessary edge influence coefficients W_'M°= REh_ w_"%=REh_
can be found in equation (50). "=;"_;-:,,:-.:--:::::"__:'::::....--

With internal pressure and the discontinuity If the influence coefficients of equations (G4)

shear and moment in the directions shown, the are substituted into equations (G1) and (G2), the _::::::"_"

edge influence coefficients are as given in the equations for //0 and _10 take the form of equa-

following equations: tions (11) and (12) in the text. < :_, -: :: :: -.
;"Y:;_?=,.,, _ : 4; 7.,
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APPENDIX H

SHEAR AND MOMENT AT THE JUNCTION OF A CYLINDER AND A CONE

In missile or space structures, a conical dome
or bulkhead is usually attached to the main

cylindrical body by means of a transition section

such as a torus. However, there are applications

where the cone is welded directly to the cylinder

(fig. 5). For such cases, the discontinuity shear

and moment at the junction are determined in

the following paragraphs.

Let the subscript c refer to the cylinder and k

to the cone. Positive shear and moment are as

indicated in figure 5. From equations (E3)

and (E4), the discontinuity shear and momen_

are determined as equations (14) and (15) in
the text.

From membrane theory, the edge-displacement

influence coefficient for the cylinder is

Since the meridian of a cylinder does not rotate
because of membrane stresses, [he edge-rotation

influence coefficient is

_,. _----0 (H2)

The other necessary edge influence coefficients

are given in equations (30) and (38), where the
coefficients for the large end of the cone (subscript

1) are used. There are instances when the

cylinder may be attached to the small end of the

conical frustum. For this case, the coefficients
for the small end of the conical fcustum (subscript

2) should be used.
29



The cylindrical pressure vessel is frequently

closed at the ends by a portion of a sphere. The

dome m_y subtend an angle consider_d)ly less

thnn 180 ° (fig. 6(b)). The special case of a

hemispherical dome as the closure (fig. 6(c)) is

commonly used. The equations Wen here are

also applicable to the case of a subtended angle

in the dome _eater than 180 ° (fig. 0(d)). The
restrictions imposed upon the spherical shell in

appendix C apply here also. The discontinuity

shear and moment at the junction of the cylinder

and spherical dome are determined in the following

paragraphs. Positive shear and moment are as

shown in figure 6(a).

With the subscript, c referring to the cylinder

and s to the portion of a sphere, the following

equations express the edge rotation and deflection

of the two shells at their junction:

_o._=_.uoHo + _.MoMo + _. _P

_o, _:oa_,uoH(, +oa_.MoMo +_O_,.p

_o.,=_,.Uo (Ho+P-_ -

Continuity of rotation and

junction requires

Vo.o=Vo,,}_o,_=_0.,

Substituting equations (I1)into (I2)gives
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ii!.iii_!iiii_ii SHEAR AND MOMENT AT THE JUNCTION OF A CYLINDER AND A FLAT HEAD

_°..; :.::-"_Ji_:.:_ One of the simplest closures for a cylindrical equations (E3) and (E4) become

"_-_"_" :'_: pressure vessel is the flat plate head. This is a

._(..-_': ,.-_)::i_ very stiff restraint on the cylinder and therefore H0= --'¢'MoO_f'P--_C'P'x('Oc'Mo--O3f'M'O_

•.f:;;_g;:_.. _:;:_i_ induces stresses in the cylinder higher than would (_e._O___].HO)(We.MO__W_.MO)___e.MOWC.Z,Op (J2)

be produced by most of the other closures, and
::-%-.::_._-:_::_:4 However, since it is the easiest and cheapest to

::_:_._.:_ __:::_i fabricate, it is sometimes used in experimental _ _,_°_._0+°_,_(_,_0--_,_o)
facilities or for other such purposes where the (_C,I.tO___f,IKO)(e_OC,MO__O.jf.Mo)__$C,._IO03C,Ito_') (J3)

-_!:.i:.::i:::/._!i_! weight of the vessel is not critical or where the
-__":=:_'_':'_:_ higher inducedstresses can be tolerated. Substituting the expressions for the edge

• :'"::'__::_'"_ The discontinuity shear and moment are deter- influence coefficients found in equations (16),
::::-'_"_-':::_ * mined here for this case with the sign convention (30), and (56) into equations (J2) and (g3) yields

::'-__" ' __-_ being as shown in figure 7. Let the subscript c equations (20) and (21) in the text. Having found

.... :_-::':"_:: refer to the c-_;n_erz..u an _'_,_Jto the flat e.onlate. With the desired discontinuity shear and moment, the
:-_::_::':_:._=_:::.i stresses in the cylinder and plate can now be

_._ _.:,...... _ o_¢,_= _._0= _/, _=o_/,_0 = 0 (J1) computed.

_5:_?:'..:'_S(L:.::',::-¢
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APPENDIX K

SHEAR AND MOMENT AT THE JUNCTION OF A CONE AND A PORTION OF A SPHERE

The lorieonical head is l'reqtwntly used in ta,ik
design. The special ease in which the torus is a

porlion of a sphere (fig. 13) can be analyzed in
the following manner. Because the expansions of

the cone and the portion of a sphere due to mem-

brane stresses only are not, in general, the same
at the junction, discontinuity forces must. be

present to make the rotations and deflections

identical at their common boundary.

Assume positive shear and moment to be in the

directions shown in figure 8. The rotation and
deflection at the junction of the cone and the

portion of a sphere can be expressed in terms of

edge influence coefficients, discontinuity shear and

moment, and internal pressure. The equations

expressing the relations can be written as follows:

_o. _= _..oHo + _k,._oMo+ _. .p 1
I

V0,_=_o,..oHO +_o_.,0Mo +_0_.,p ]

.,=,,.(
" H pR,

l%.,=_0,.no ( o+ --ff- eos a,) +_o,.Mo3lo +*O,.,P J

(K1)

The subscripts k and s refer to the cone and spheri-

cal shell, respectively. Continuity of rotation
and deflection at the junction results in the

following equations:

_o._= 17o.,-L I(K2)tr

WO, _=Wo, s J

32

Sut)stitution of equations (K1) into equations

(K2) gives equations (23) and (24) in the text.

The edge influence coefficients are obtained from
equations (38) and (50). Note the changes in

the signs of some influence coefficients, as men-

tioned in the body of the report. In addition, the

coefficient ,0,.r is zero, since the meridians of a

sphere do not rotate when subjected to membrane

stresses only. The edge-displacement coefficient

for the portion of the sphere due to internal pres-
sure _,._ can readily be obtained from membrane

theory. The expressions for _0,.v and _,.v are
then _

*°s'v_O t

and (K3)
1--v R.: sin a,

&_= 2 Eh,

FIOUaE 13.--Toriconical head on cylinder.
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EFFECT OF NONCONCURRENCE OF MIDDLE SURFACES AT SHELL JUNCTIONS

Frequently the middle surfaces of two shells do
not coincide at their junction. This situation

may arise because the shell has been milled on
only one surface or because two shells of differen t
thicknesses have been ioined to give a smooth
outer contour or for some other reason.

This eccentricity of the middle surfaces induces
bending stresses in addition to those previously
found for the shell junctions which have continuous
middle surfaces. The following paragraphs show

H

/-t

Axis of t revolution-,

(a)
H

..-M

P

Nf'M. N--

/-/

how these additional bending stresses can be
found.

Consider first the case where the tangents to
the meridians at the shell junction are parallel.
Let the meridional membrane force be denoted by
N and the distance normal to the shell between

the middle surfaces be d as shown in figure 14(a).
As before, imagine the shell to be cut into two
pieces by a plane passing through the junction.
Very fundamentally, it is possible to represent the
forces at the cut by equal and opposite shear
forces H and equal, opposite, and colinear normal
forces N acting along some unknown line of action.
Assume this line of action is at distances.f and g
from the middle surfaces of shells i and j, respec-
tively. Since N represents the resultant meridi-
onal force on either side of the cut, there is no

bending moment present. The meridional forces
are moved to the middle surfaces along with
bending moments N f and N9 as shown. Notice
that the moments acting on the two edges are not
equal. This is a result of the nonconcurrence of
the middle surfaces and the fact that the meri-
dional forces N are not now colinear. Let

M, = Nf (L 1)

Then, considering only the geometry, the moment,
on the other side of the junction is

M_=Ng----M_--Nd (L2)

The equations of continuity at the junction are

lo._=T%._ (L3)
@o._=w'-'_._,_

In terms of edge influence coefficients, _,(lge loads
Axis of revolution_ and internt_l pressure, equation (1,3) becomes

(a) Fundamental force system.

(b) Conventional force system. _,_rH-}-_,MMc£_,, _p--_.aII4-_.._J[ j +_. ol)

Fi_'a_ 14. Shell junction with nonconcurrent middle
surfaces. (L4)

33
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Substituting equation (L2) into (L4) and solving for H and 21L yield

- P

02_.M_ ].M--(,OJ.3f_i.h¢

.][_-

Substitution of equation (L6) into (L2) gives

31_----

+ (_,..- _,.) (_,..,.- _,_)- (_,,.-_,.) (_,,.- _..)

A_I (LS)

Nd (L6)

Nd (L7)

tricity of the middle surfaces must be measured

normal to the shell axis. Equations similar to
(L5) to (LT) will finally result. Because of the

lack of availability of all necessary influence coef-

ficients, this case was not pursued further.
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The first parts of equations (LS) to (L7) are

reco_ized to be the discontinuity forces deter-
mined before when the middle surfaces were con-

tinuous (see eqs. (E3) and t-E4)). The other
terms are the effect, of the nonconcurrence of the

middle surfaces. Thus the discontunity forces

due to only the nonconcurrence of the middle sur-

faces can be computed by using the second half of
equations ('L5) to (L7). These forces can then be

added to those given in the body of the report to
obtain the resultant, stress distribution.

.Tile sign of the bending moment Nd must be

assigned with care. It would be oppositely di-
rected if the middle surface of shell i were inside

the middle surface of shell j at the junction (fig.
14(b)).

If the tangents to the meridians at the shell

junction are not parallel, it is not possible to use

the foregoing equations because the meridiona]

forces are not equal and opposite. In such a case,

it is probably most convenient to work with forces

at the junction which are either parallel or per-

pcndicular to the shell axis. As in the previous

analysis, the components perpendicular to the

shell axis do not affect the edge moment. In com-

puting the bending moments due to nonconcur-

rence of the middle surfaces in this case, the eccen-
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